一个引人注目的标题来吸引或混淆 读者?嗯,当然不是后者,因为一个人经常 在尝试理解打印在 许多录音机随附的规格表。我们 查找参考的失真性能和信噪比 到 185、200、250 甚至 370nWb/m。在某些情况下,通量值 提到高达 1,000 甚至 1,040 nWb/m,而欧洲人 使用320和514 nWb/m等奇数值作为参考通量。 所有这些不同的价值观从何而来?也许是一些光 可以通过回顾历史来了解这个问题 的磁记录。
$ m3 `5 y( I! U! R- g
: @: ? z* Z, @9 ^
) d3 B J& t7 {$ z/ |创建" z3 A& ]: f+ H
$ i! f3 }* d( c
标准 让我们回到大约 30 年前,回到 Geman 技术人员的时代 早在之前就已经在谈论标准磁带助焊剂 他们在大西洋彼岸的同伙是。他们 定义读起来是这样的:“...为了目的 程序交换,剩余磁带磁化的参考值 必须建立。使用通用磁带时,这 电平应比最大输出电平低约 6 dB。 (实际上,当时的跨度只有 4 dB - 作者)。福蒂西莫 通道应将磁带调节到该参考电平。 这对于程序交换非常重要。只 在程序交换不是标准的应用中,调制 可容忍高达 3% 的三次谐波失真; 这是为了实现更高的信噪比和 更好地利用磁带。对于 38 类(15 ips),参考 级别设置为 200 毫麦克斯韦和 19 级 (7.5 ips) 到160毫麦克斯韦。(DIN 45 513草案)。[1] 记住 这可以追溯到1955年!. b k `# q2 W& O
在美国,当时所知道的一切,就录音而言 标准关注,是由知名人士制作的校准胶带 磁带录音设备(Ampex)制造商 在其上记录的参考水平,该参考水平被命名为“操作” 水平。该操作电平用于校准 VU 计获得 0 VU 偏转。通过深入挖掘, 人们能够了解到这个操作水平对应于 到当时最广泛的三次谐波失真的1% 在美国使用(通用)录音带。2 x+ W4 ^$ a. M5 h5 K7 ]
/ m) I/ V( P; A& X& C
8 @# a) E: {' c6 J& f l9 U
摩尔和 VU 计& ` L; O2 P4 P7 s4 t4 L
1 Y: @( P* x& n1 k' t在这一点上,可能会有兴趣注意到这个将军 目的磁带产生3%的三次谐波失真 当它被调制到比工作电平高出约 6 dB 的点时。 许多工作室(特别是一些欧洲工作室) - 其中 VU表在60年代初开始出现 - 可能被这个事实误导了,认为VU表有 使用 6 dB 引线工作。然而,到1966年,德意志 诺门工业公司(DIN)已经认识到这是 不太正确,因为它在解释性说明中有所说明 随附 DIN 45 406 那“....平均所需的铅 约为 8 dB (8 VU)。与该平均值的偏差±5 然而,dB并不例外。. D( c! W' i" V1 G3 y
如果将其与旧的 RETMA TR 105 B 标准(1951 年)进行比较 对于广播系统的音频设施,可以阅读 第V.2.a节中的以下内容:“如果安装了VU表, 它应保持正常状态等,其乘数应 保持设置为低于标准输出 10 dB 的信号 电平“(标准输出电平为 +18 dBm)。 O5 \& A. X ^. z1 }
难道不能由此得出结论,信号峰值,如记录的那样 在磁带上,产生的通量值高达 8 至 10 dB 以上 换句话说,1%的失真水平远远超过1%的失真水平 3%的失真点?是的,因为在 1965 年 NAB 卷对卷录音的标准有以下几点要说 在第 2.04 节的脚注中,该节与标准有关 参考程序级别:“众所周知,在 正弦波负载处理之间至少需要 10 dB 裕量 测量的系统容量和程序材料的水平 通过标准音量指示器。NAB标准参考 级别在第 2.03 节中描述,脚注如下: 如下:“录音是...在输出级别 比产生 3% 的三次谐波失真低 8 dB。 (这与上述陈述并不矛盾,因为它 简单地定义一个磁带磁化水平,即用于 作为参考。那么,我们该何去何从呢?9 P$ W( \/ T+ }! B1 @! X1 d" n
. T& Y5 S9 _6 L2 w$ S- [
! V. s n2 p' n+ z9 ]美国参考 幸运的是+ d/ @: }4 B3 U' |) e* U
( U P6 j! m: Q
美国的约翰·麦克奈特: z& F( H9 m" b( O+ x7 z7 `$ V9 C# C
似乎有 一直为录制磁带缺乏精确值而烦恼 通量。因此,他调查了这种情况并准备 他的发现将发表在《音频工程杂志》上 社会。[2] 提到或建议参考通量为 100 nWb/m 在那次调查中,人们第一次读到210 nWb/m 表示前面讨论的工作电平和 165 nWb/m 为NAB标准参考水平。后来,这些值 略有向下修正,从 1972 年的数据表 校准胶带制造商的读数为 185 nWb/m 用于工作电平,150 nWb/m 用于 NAB 基准 水平。
" `- E6 c4 |: O& X9 o在这一点上,我们应该停下来仔细看看 计量单位。- X7 E* Q" m% b2 j' A: E
$ U7 V) R. P( I( b: C
, O) @; B6 R4 ?9 ]7 I
计量
/ D0 X+ A8 u& p% q6 w9 T8 T' n( k( ^
单位纳米韦伯每米是通量值,即 如果磁带为 1 米(或大约 39 3/8 英寸)时测量 宽。将其减小到更现实的宽度,即 1mm(或 39 密耳),单位变为皮韦伯每毫米,即 0.1毫麦克斯韦每毫米在ST单位之前的日子里 生效。在 NAB 参考水平的情况下, 结果为 15 mM/mm,这解释了提到的值之一 在本文的标题中。5 i9 h- M9 i0 R) L A9 K
由于我们已经在做一些计算,让我们看看 前面提到的德国参考200毫麦克斯韦 适用于 1/4 英寸磁带。如果我们将该数字除以公制等效值 1/4 英寸,即 6.25 毫米(今天的磁带宽 6.3 毫米), 然后我们得到 32 mM/mm 的数字。将其转换为纳米韦伯, 我们达到标准的 320 nWb/m。* n9 }: d( \) G, V8 c1 o
在这一点上可能值得一提的是,在比较中 在美国和欧洲的水平上,人们必须意识到这样一个事实: 测量剩余通量的ANSI S 4.6方法产生一个值 与执行的测量相比,低 0.8 dB 符合 DIN 45 520 标准。在实践中,这意味着 在比较美国和欧洲原产的校准胶带时, 美国磁带将产生一个小时igher信号电平因为什么 在美国为 200 nWb/m,在欧洲为 220 nWb/m。 (这也解释了前面提到的向下修正 从 165 到 150 nWb/m.)
, r, o6 B E9 ~ j' O% C# m6 }! y X0 X: S- L
% m- v D- e% }
立体声单声道兼容性. O' z. p) U) U( a% r& {: F2 g- H
5 \4 T2 z/ v% ^8 w( U. ~: p6 A
在对关卡及其历史的题外话之后,让我们继续 上。多年来,磁性氧化物得到了改进,使 磁化强度水平不会产生不利影响 失真性能。这使得提高操作成为可能 电平 (0 VU) 至 250 nWb/m,用于所谓的高输出磁带。 在欧洲(更准确地说是在德国),立体声的出现 让那些苛刻的工程师伸手去拿他们的计算尺,因为 立体声/单声道电平兼容性是他们的目标。音乐制作 已经以立体声录制,但广播仍在 单。这样的立体声录音,当在完整轨道上播放时 磁头,没有产生与结果相同的信号电平 播放单声道录音时;有一些未使用的,未磁化的 立体声轨道之间的“着陆”,以及左右 信号不是代数相加的。一个人可以忍受 降低立体声中的串扰性能,因此轨道 加宽,直到它们之间的间隔仅为0.75mm,使每个 轨道宽 2.75 毫米。因此,核心部分 头部以一定角度展开以容纳绕组。 由此,蝴蝶头诞生了(见图1)。
) J2 p" ^* }, d2 h | |
| 图1.蝴蝶 头 |
磁带的宽度被利用到可能的最大, 但仍然没有达到立体声/单声道电平兼容性。一个 很少快速计算,可以看到立体声录音 必须调制到 514 nWb/m 才能产生相同的 信号电平为从 320 nWb/m 单声道获得的信号电平 在单声道再现器上播放立体声磁带时录制。
: @8 Z" I: y8 @9 e+ ^总通量,单声道,1/4 英寸(6.25 毫米)磁带:3 m* E! A1 \; p' g2 n8 r5 u) R5 c
320 nWb/m x 6.25 = 2000 nWb/m
5 N" O3 X4 r0 }5 D! }" N在全音轨头上播放立体声: 目标已达到:
{" o/ w5 f. r$ |) X" L
. a! v6 z w4 r. \$ n @混音台上的推子没有 要移动,无论是单声道还是立体声录音 被玩了!当时看到也许有点奇怪 市场上出现的空白磁带被标记为“立体声”, 虽然这仅仅意味着这样的磁带可以被调制 到更高的立体声电平,而不会增加失真。
" r- k, f+ B# z4 ^3 j$ h% Y+ r立体声/单声道兼容性 - 不再引起太多兴趣 - 这样解释,但是通用兼容性呢 一般记录的水平?
5 K) N3 E+ r2 C( W* @2 t, s6 e% j' u
) K0 e! |! Q( g1 W, G武 VS.ppm和峰值通量率
r; q$ B. ]2 u) J* A
2 K' t1 h& X8 L" p在美国,VU计仍然受到青睐,而在欧洲 峰值程序仪表 (PPM) 占主导地位。性能特点 后者在 IEC 280-10 和 在DIN 45 506中。它是一种快速作用的仪表,正因为如此, 它也被称为“准峰值读数仪”。然而 正如准这个词所暗示的那样,它不是一个真正的峰值指示 装置。仔细检查其特征行为 表明短调制峰值可能超过1至4 分贝。[3]
3 M p5 H3 m9 f5 `) f% ?- p最大输出电平的图形表示(图2) 各种磁带的性能 (MOL),包括最现代的磁带 氧化物,显示了磁带性能多年来如何提高。 普遍认为的最大调制点 是三次谐波失真含量的水平 测量3%,[4]已逐渐转向更高的通量 值,至少一种最先进的技术达到 1,200 nWb/m 磁带。这解释了标题中的第二个数字。相当 从 150 nWb/m 的 NAB 基准到高输出的宽范围 操作参考德国DIN水平的单声道和 立体声,直到今天可能的MOL。8 o M6 ~7 x$ C# c2 ^
| |
8 \9 {! Y1 Y7 U' A) ^图2 磁性的最大输出电平(MOL)性能 以 15ips 的速度录制磁带。O= 理论峰值通量值,当 按照文本中所述对齐 VU 仪表或 PPM 虚线 (1955} 表示旧美国磁带的性能 if Flux 根据DIN测量值。 |
尝试建立偶数的参考 被反复制作。例如,有EIA标准 RS-400/1972 包含对 CCIR 79-1/1966 的引用,其中 时间建议值为 100 nWb/m,最近 时,人们发现在较新的EIA标准中提到了400 nWb/m。 但这一切对工作室的维护工程师帮助不大。 当面临如何校准他的决定时 液位计。因此,在分析这一历史回顾时,它 几乎可以自动得出结论,250 nWb/m(甚至 320 nWb/m)将是校准VU表的良好参考 到其 0 VU 参考偏转,因为它允许调制 峰值可达 800 或 1,000 nWb/m。在准的情况下 然而,峰值读数表或PPM,510 nWb/m(或500 简单起见,是两倍 250)将同样好 基准电压源,因为假设其4 dB过冲将再次产生 在 800 nWb/m 范围内的峰值磁化强度下,仍然很好 低于公认的 MOL 3% 三次谐波失真。
, E+ s' O- ?7 K. w {当然,这取决于个别工程师的自由裁量权, 至于他打算用多大的努力使他的磁带达到饱和。 但是,应该记住,对于每增加一个dB 在信噪比中,必须付出不成比例的增加 歪曲,这是一位先驱者很久以前发现的事实 在开发新的录音技术。[5]7 q M1 G- d+ V' q
模拟录音可能还会存在一段时间,所以它 希望从本文中可以得出有用的结论 这有助于确保模拟的内在质量 不是不明智地放弃,这种情况可能经常发生。 | |
引用
6 G3 ?: K# S) f| 1. | 克朗斯,F. “Herstellung und elektroakustische 博士” Eigenschaften der AGFA Magnetbander, Filme und Bezugsbänder.” Sonderdruck aus den Forschungslaboratorien der AGFA Leverkusen. 第一乐队(1955年304月),赛特<>。 | | 2. | 麦克奈特。John G. “绝对通量和频率 磁记录中的响应特性” 预印本 447。第31届AES大会。1966年78月。发表 修订后:《SMPTE杂志》第1969卷。(457年472月), 第<>-<>页。 | | 3. | 银。Sidney L. “VU-Meter vs Peak Program Meter.” 数据库(1980年46月)。第49-<>页。 | | 4. | DIN 45 511。“IEC 草案 94-5。”澳国银磁性 记录和复制标准(1965年),第2.11节: 失真。 | | 5. | Langevin, Robert Z. “Interharmoniation Distortion 在磁带录音中。AES杂志(1963年11月)。卷。 270.第278-<>页。 |
| |
澳大利亚:DB杂志1984年36月页 38-<>/ n d* {/ I* a; ?7 V4 T
| |
| |
|